她表示,在简化来华手续的同时,中方也致力于让外国朋友在华工作生活更加方便舒适。北京、上海、广东等省市完善移动终端、银行卡、现金等系列支付服务,外国朋友网上购物、交通出行更顺畅。中国的电信网络运营商通过增设网点、提升外语服务、上线新套餐等方式,让外国朋友更便捷地接入和使用5G网络。越来越多的城市开设专窗,以“一站式”服务为外籍人员快速办理工作、居留许可。
绪论生物传感器在各个学科中无处不在,例如生化、电化学、农业和生物医学领域。它们可以集成各种即时护理应用,例如食品、医疗保健、环境监测、水质、法医学、药物开发和生物领域。已采用多种策略来开发和制造小型化生物传感器,包括设计、优化、表征和测试。鉴于它们与高亲和力生物分子的相互作用,它们可用于分析物的灵敏检测,即使是小体积的样品也是如此。在众多已开发的技术中,微流体技术已被广泛探索;这些传感器使用流体力学来操作微型生物传感器。目前使用的商用设备体积庞大、运行缓慢、价格昂贵,并且需要人工干预;因此,很难将现有的传统设备自动化、集成化和小型化,以实现多方面的应用。微流控生物传感器具有移动性、操作透明性、可控性和稳定性等优点,传感反应体积小。本综述讨论了生物传感器技术,包括基于微流体的生物传感器的设计、分类、进展和挑战。批判性地讨论了开发基于微流体的小型化生物传感器设备的价值链,包括用于各种护理点测试应用的制造和其他相关协议。
引言
即时检测 (POCT) 涉及现场检测或在需要护理的地点附近通过临时制作医疗保健设备进行检测。POCT 最重要的组件之一是带有集成读出装置的微流控装置 [10]。基于 POCT 的微型设备几乎不需要人工干预,最大限度地减少了人为错误,并以经济实惠的方式使用最少的功耗。大多数小型化和自动化的微流控 POCT 设备可以打包并集成到一个统一的接口中,使灵敏、微创和非侵入性设备能够以连续、快速、低成本和可靠的方式检测与生物样本相关的多种生物标志物,如唾液、尿液和血液 [11,12].器件小型化现在变得越来越普遍,尤其是在电化学和生物传感分析中。在电化学研究中,减小电极尺寸会影响电化学技术的检测限,以及所需的灵敏度、选择性、可重复性和准确性,从而提供了一种低成本的高通量分析方法[13,14]。
本文批判性地讨论了基于微流控的小型化生物传感器的演变、设计、工作原理、分类和最新进展。可以使用 CO 等多种技术设计和制造的各种类型的生物传感器2激光器、3D 打印机和紫外直接激光器提高了基于微流体的生物传感器的重要性,从而挑战了具有自动化、集成和小型化潜力的小型化生物传感器的相关发展。讨论了即兴设计与基于微型微流体的生物传感器相关的领域的未来范围的进一步可能性。
生物传感器的演变
生物传感器由 Leland Charles Clark Jr. 于 1962 年首次报道,他构思了演示生物传感器组件的想法,以及将生物受体与换能器设备集成的策略 [ 6 ]。 图 1 显示了生物传感器的三代发展, 而表 1 总结了进化途径。
生物传感器的设计和原理
生物传感器的分类
传感器可根据其成分或要检测的分析物分为几类。有源传感器必须由单独的电源供电,例如热敏电阻、麦克风或应变计,它们也称为参数传感器。无源传感器产生信号,但不需要任何外部电源即可运行;光电二极管、压电、热电偶和热敏电阻传感器就是一些例子。基于接触的传感器(如温度传感器和机械传感器)需要与刺激进行物理接触,而非接触式传感器(如磁性和光学传感器)不需要任何物理接触。绝对式传感器对应变计和热敏电阻等刺激做出大规模的响应。环境应力决定了压力,而相对传感器则检测催化剂与固定或变化的参考之间的关系,例如测量热差的热电偶。模拟传感器是一种将不断变化的物理参数转换为模拟信号的设备。模拟传感器包括温度、湿度和压力等。在数字传感器中,输出为布尔格式。根据信号检测的类型,这些传感器分为 (i) 化学、(ii) 热、(iii) 物理和 (iv) 生物传感器。这些技术已广泛应用于生物医学领域以及MEMS领域[ 35 ]。 图 3 显示了根据生物受体和传感器的不同用途对各种类型的生物传感器进行分类。
基于生物受体
酶、抗体、全细胞和基于激素的生物传感器
酶标记是生物分析中用于将化学标记物放置在物质内的分子上的一种方法。酶标记抗体用于 ELISA、Western blotting 和免疫染色。通过与发光或变色的底物反应来检测标记抗体。与其他蛋白质一样,抗体可以用小分子、放射性同位素、酶蛋白和荧光染料标记。
纳米颗粒 (NPs)
由于纳米技术的进步,生物传感器研究变得更加多样化[38]。探索基于金属和金属氧化物基纳米颗粒、纳米棒、纳米线、纳米薄片、纳米锥、纳米球、碳纳米管、量子点和纳米复合材料的纳米材料,为提高生物传感器性能提供了可能性,从而通过控制尺寸和形状来提高检测能力[39,40]。图 4 显示了不同种类的纳米生物传感器;这些的工作原理与宏观和微观对应物相同,但信号和数据转换是在纳米尺度上进行的。纳米生物传感器用于 (a) 在具有挑战性的环境中监测的物理和化学事件,(b) 医学诊断和细胞器中的生化检测,(c) 检测工业和环境应用中的纳米颗粒,以及 (d) 检测超低浓度的潜在危险污染物。
近年来,纳米颗粒 (NPs) 因其信号转导能力而被用作传感器,因此被认为是一类新型的生物受体;各种无机纳米颗粒,如碳纳米管(CNT)、金属纳米颗粒和石墨烯,已被用作传感器[ 41,42 ]。 表 2 总结了生物传感器开发中使用的不同纳米材料。
基于 Transducers
量热式生物传感器
量热式生物传感器
热生物传感器利用了最重要的生物反应之一(放热或吸热),即检测吸收或传递的热源。温度变化 (DT) 与反应焓 (DH) 和产物的摩尔数 (np) 成正比,但与质量 (m) 和反应热容 (Cp) 成反比 [59],可以写成:DT=(np DH)/mCp
DT 系列=自然胜率 DH 系列/mCp
量热生物传感器利用热量测量反应的程度或溶解生物分子的结构动力学[60]。使用由微机电 (MEMS) 材料组成的热传感器来监测基于热监测的代谢应用最近已变得流行 [61]。
声学生物传感器
声学生物传感器
声学生物传感器的工作原理是响应吸收分析物量的变化而改变声波的物理特性。由于压电材料能够产生和传输与频率相关的声波,因此经常用于传感器传感器。压电晶体的物理尺寸和质量会影响声波传播的理想谐振频率。表面材料质量的变化会导致晶体固有谐振频率的可观察变化。体声波 (BAW) 和表面声波 (SAW) 设备是两种类型的质量平衡声学换能器。
电子生物传感器
电子生物传感器
场效应晶体管通常用于创建电子生物传感器 (FET)。FET 是一个三端子器件,它使用电场控制流过它的电流。这些器件在半导体的源极和漏极之间工作,改变通过栅极极端子的阻抗。此外,基于 FET 的生物传感器比传统的生物传感方法具有优势。然而,当用于体外应用时,这些应用有许多局限性。离子敏感场效应晶体管 (ISFET) 和金属氧化物半导体场效应晶体管 (MOSFET) 是生物应用中常用的基于晶体管的传感平台,具体取决于施加栅极电压的技术、栅极和通道区域的设计和材料。这些电子生物传感器被证明可以满足其他重要领域未满足的需求,例如可持续农业和环境监测。
电化学生物传感器
电化学生物传感器
生物传感器已得到充分研究,并广泛用于生物和生化应用[ 62 ],因为这些应用致力于基于分析物和传感器的电化学特性,并且具有良好的选择性、灵敏度和生物分析物检测能力[ 63,64 ]。 电化学生物传感器根据其转导机制进行分类:(i) 电位法,(ii) 安培法,(iii) 阻抗法,(iv) 电导法和 (v) 伏安法。 图 5 显示了不同类型电化学生物传感器的示意图。
在零电流下,电位生物传感器检测由于分析物和生物受体相对于参比电极的相互作用而在工作电极上积累的电荷[65,66]。当工作电极相对于参比电极提供恒定电压时,这些传感器可以检测工作电极上电化学氧化或电活性物质还原产生的电流。电导生物传感器用于确定两个电极之间的电导因电化学反应而变化的程度,而电导和阻抗生物传感器经常用于监测活生物系统中的代谢活动[67]。当传递一个小的正弦刺激脉冲时,阻抗生物传感器可以检测电极/电解质接触处产生的电阻抗。当向传感器电极施加低幅度交流电压时,阻抗分析仪用于量化同相/异相电流响应与频率的函数关系[68]。伏安生物传感器在调节电压变化期间测量电流以检测分析物。这些传感器具有读数灵敏度高和可同时检测多种分析物的优点[69]。
石英晶体微量天平 (QCM) 是一种生物传感器平台,它包含一个机械传感器,并根据质谱检测原理运行。此外,它还监测质量或粘附在石英晶体表面的层厚度的变化[70]。此外,表面声波 (SAW) 生物传感器产生电磁脉冲信号,该信号通过有线连接或无线天线发送到设备。电磁信号通过指间换能器 (IDT) 转换为表面声波。这些基于水平极化表面剪切波,能够实时直接和无标记地检测蛋白质。信号响应变化主要由器件表面的质量增加和粘弹性变化引起 [71]。表 3 显示了电化学生物传感器的原理、优点和缺点。
基于检测系统
光学生物传感器
光学生物传感器
机械生物传感器
机械生物传感器
以技术为基础
生物传感器的特性
基于微流体的小型化生物传感器:设计和制造
即时检测提供了易感和非侵入性设备,用于以连续、快速、低成本和可靠的方式检测生物样本中的各种生物标志物,例如葡萄糖。微流体是一种使用流体力学开发微型生物传感器的技术。另一方面,现有的商用设备体积大、速度慢、成本高昂,并且需要人工干预。尽管基于微流体的生物传感器的开发取得了重大进展,这些传感器将继续与现有或成熟的方法同步发展,但在单一平台上实现当前传统设备的自动化、集成和小型化是一项具有挑战性的任务。这个问题在基于微流体的小型生物传感器的生产中引起了极大的关注。微流控器件具有机动性、操作透明性、可控性、可靠性、准确性和稳定性等优点,响应量小。由于执行众多应用所需的外围设备很少,因此使用不同技术制造的基于微流体的生物传感器可实现更快的处理速度和更高的效率。 图 7 显示了基于微流体的生物传感器开发中广泛使用的各种微纳加工技术的示意图 [ 100 ]。
表 5 总结了用于开发用于构建微流体设备的不同材料/基材的微型微流体生物传感器的各种微加工技术,以及它们的优缺点。材料
生物传感器需要各种关键的材料来制造微流体设备。用于微流体通道的材料必须足够,并且必须表现出必要的品质。玻璃和硅是最早用于微流体应用的材料。随着时间的推移和技术的进步,微流体生物传感器是使用聚合物、复合材料和纸张等新型材料开发的。无机、聚合物和纸质材料可用于制造微流体通道。这些材料应具有高熔点和强导热性。此外,可以在微通道上使用导热膏或导热膏,以提高材料的导热性。因此,在微流体技术中,用于开发微流体器件的材料非常重要。一般来说,微流控器件可以由多种材料制成,如硅[ 108 ]、玻璃[ 109 ]、纸[ 110 ]、石墨烯[ 111] 、聚二甲基硅氧烷(PDMS)[ 112 ]和聚甲基丙烯酸甲酯(PMMA)[ 113 ]。 表 6 展示了用于开发微流体生物传感器的几种材料。
Jaligam等[114]描述了一种低成本的、基于微流体的生物传感器,该传感器具有三个电极,用喷墨打印机在纸基板上制造,其中ZnO纳米颗粒被滴铸到工作电极(WE)上,以根据循环伏安法(CV)和方波伏安法(SWV)的需要对其进行轻微修改。改变苦味酸含量和 10 至 300 mVs 潜在扫描速率的影响 −1 进行了检查(图 8A)。在实验过程中,线性范围在 4 μM 至 60 μM 之间,而检测限为 4.04 μM,远在 8 μM 的安全限值内。
Gomes等[115]开发了一种基于细菌纤维素的电化学传感平台,可用于POC传感;这是通过利用丝网印刷工艺创建的。即使在水溶液中测量后,含有细菌纤维素的基材在机械性能方面也表现出良好的抵抗力(图 8B)。使用一次性纸质生物传感器和 50 μL 反应样品测量人工汗液中的乳酸。制造的生物传感器在安培法中表现出出色的响应,可检测 1–24 mmol L 范围内的乳酸−1在人工汗液中,检测限为 1.31 mmol L−1定量限为 4.38 mmol L−1.
Yong等[116]报道了一个简单而新颖的想法,即对与制药、环境、水和食品监测相关的几种分析物进行基于液滴的电化学传感,由于其成本效益和易于丝网印刷的制造,使其非常有用。所提出的生物传感器已用于微流体环境中的电化学应用(图 9A)。
Xuan等[117]报道了一种与电化学传感器完全集成的微图案还原氧化石墨烯(rGO)的设计和制造(图9B)。方波阳极溶出伏安 (SWASV) 方法用于研究集成电化学微能力传感器,以检测乙酸缓冲溶液中的镉和铅离子。对于这两种金属离子,微型传感器的检测限为 1 g L−1至 120 g L−1,检出限为 0.4 g L−1和 1 克 L−1(S/N = 3) 分别。
Sangam等[118]报道了一种用喷墨打印机制造的三电极系统,该系统用于集成基于液滴的微流控装置,用于电化学检测抗坏血酸。喷墨打印机用于生产和集成微流体 T 结装置(图 10A)。制造的微流控装置用于检测抗坏血酸,在较低流速(1 L/min 和 50 mV/s 时 2 mM 浓度的组合)下产生准确的氧化峰,电位为 0.28 V 的尖峰。
Wang等[ 119 ]展示了一种基于智能手机的设备,该设备集成了易于使用的微电子离子传感器,用于通过智能手机音频插孔进行电化学测量( 图10 B),其检测限为0.2 ppm;因此,基于智能手机的 MoboSens 平台 (65 g) 可以在一分钟内测量水中的硝酸盐浓度。MoboSens 平台上的微制造微流体传感器使用基于循环伏安法的电化学方法检测硝酸根离子 [ 120 ]。
应用
生物传感器用于提高各种应用中的生活质量。环境监测、疾病检测、食品安全、国防和药物研究是此类应用。 图 11 显示了生物传感器各种应用的示意图。
食品加工和环境监测
基于酶的生物传感器也用于乳制品行业[126];流通池已连接到基于丝网印刷碳电极的生物传感器,酶被安装在电极上的聚合物封装。因此,已经使用基于流量的自动生物传感器对牛奶中的三种有机磷杀虫剂进行了定量[127]。代糖是使用最广泛的食品添加剂之一,与多种疾病有关,包括蛀牙、心血管疾病、肥胖症和 II 型糖尿病。在这种情况下,多通道生物传感器被认为可以通过电化学方法有效地合并脂质膜,以实现快速和灵敏的甜味剂筛选。在这里,MATLAB 软件与时空方法一起使用,以评估天然糖、糖精和甜蜜素(代表人造甜味剂)中的葡萄糖和蔗糖信号 [128]。
生物医学领域
生物医学领域
植物生物学
植物生物学
生物防御传感
生物防御传感
生物传感器的局限性和挑战
生物传感器已经开发了 50 多年,在过去的几十年里,学术和工业界取得了重大进步;然而,除了侧向层析妊娠试验和电化学葡萄糖生物传感器外,只有少数生物传感器在全球市场取得了成功。造成这种情况的原因有很多,例如难以将学术研究转化为商业上可行的行业原型、临床应用中的复杂监管问题、难以找到具有生物传感器技术背景的合格研究人员,以及与来自不同科学和工程学科的研究人员合作。
特异性、灵敏度、无毒、低浓度检测和成本效益都是创建生物传感器的因素。考虑到这些品质将有助于解决有关生物传感器技术的关键标准和问题,但存在很大的限制。此外,电化学传感器和纳米材料的结合导致了新型生物传感器的开发。此外,用于单一分析物检测的接触式传感具有许多优势,包括高特异性的实时分子测量。由于患者和相关疾病之间的生物标志物存在差异,这些技术限制了多种分析物的检测。然而,用于各种分析物检测的共振能量转移技术经常得到展示,这在临床诊断中得到了很高的回报。在电化学传感器生物制造中,使用微悬臂或纳米悬臂作为传感器在多种分析物检测中提供了更大的应用潜力。使用喷墨或激光直接写入的 3D 生物打印的非接触式传感器也表现更好。这些技术的成本以及它们被调整的潜力是必不可少的缺点。但是,这些设计存在明显的缺点,使其不适合广泛使用。首先是有关最小生物传感器设计和组装的背景信息。
此外,为了更好地理解小型化生物传感器,进行了 SWOT(优势、劣势、机会和威胁)分析,如图 12 所示。从图 12 中可以看出,该领域在众多领域具有突出的实力和无限的机会。还可以看到,各个领域都有需要改进的领域,可以随着时间的推移和技术的进步而完善。考虑到该领域合并的好处,我们坚信这些弱点可以被忽视。此外,我们相信,在不久的将来,小型化生物传感器与先进技术的合作将为实现用于护理点应用的智能微流控系统铺平道路。
未来范围
转基因蛋白质离体或体内递送到细胞中可用于创建基于细胞和组织的生物传感器。利用生物光子学或其他物理原理,研究人员可以持续、无创地监测激素、药物或毒物的水平。在这种方法中,范围在未来的调查中可能很有价值。生物传感器技术市场正在以惊人的速度爆炸式增长。事实上,据预测,到 2020 年,它的价值将超过 225 亿美元。在需求不断增长的同时,生物传感器技术也达到了新的高度。此外,生物分子具有独立的结构和活性,因此难以将纳米材料和生物分子的结构和功能相结合来构建单分子多功能纳米复合材料、纳米薄膜和纳米电极。加工、测试、界面挑战、高质量纳米材料的可用性、纳米材料定制以及指导这些纳米级复合材料在电极表面的行为的原理都是当前方法的重大障碍。开发基于微流体的小型化生物传感器设备的价值链,包括制造技术和其他相关程序,可用于多种 POCT 应用。
图 13 显示了生物传感器从设计到商业化的未来范围。广泛的应用范围强调了在未来研究中研究生物传感器的重要性。未来范围可以分为三个阶段:设计/开发、数据采集/通信和应用。设计/开发包括小型化生物传感器的优化、表征和制造。数据采集/通信涉及具有智能手机功能的图形用户界面。此外,生物传感器在生物医学、生化和纳米材料领域也有广泛的应用。
结论
引用
Wang, J. Glucose biosensors: 40 Years of advances and challenges. Electroanalysis 2001, 13, 983–988.
Lee, M.; Zine, N.; Baraket, A.; Zabala, M.; Campabadal, F.; Caruso, R.; Trivella, M.G.; Jaffrezic-Renault, N.; Errachid, A. A novel biosensor based on hafnium oxide: Application for early stage detection of human interleukin-10. Sens. Actuators B Chem. 2012, 175, 201–207.
Mehrotra, P. Biosensors and their applications—A review. J. Oral Biol. Craniofacial Res. 2016, 6, 153–159.
Vigneshvar, S.; Sudhakumari, C.C.; Senthilkumaran, B.; Prakash, H. Recent advances in biosensor technology for potential applications—An overview. Front. Bioeng. Biotechnol. 2016, 4, 11.
Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 2021, 21, 1109.
Puneeth, S.B.; Kulkarni, M.B.; Goel, S. Microfluidic viscometers for biochemical and biomedical applications: A review. Eng. Res. Express 2021, 3, 022003.
Kulkarni, M.B.; Goyal, S.; Dhar, A.; Sriram单票配资是什么, D.; Goel, S. Miniaturized and IoT enabled Continuous-flow based Microfluidic PCR Device for DNA Amplification. IEEE Trans. Nanobiosci. 2021, 21, 97–104.
Kulkarni, M.B.; Goel, S. Miniaturized DNA amplification platform with soft-lithographically fabricated continuous-flow PCR microfluidic device on a portable temperature controller. Microfluid. Nanofluid. 2021, 25, 69.
Kwon, S.H.; Lee, S.; Jang, J.; Seo, Y.; Lim, H.Y. A point-of-care diagnostic system to influenza viruses using chip-based ultra-fast PCR. J. Med. Virol. 2018, 90, 1019–1026.
Wang, D.; Chan, H.N.; Liu, Z.; Micheal, S.; Li, L.; Baniani, D.B.; Tan, M.J.A.; Huang, L.; Wang, J. Recent Developments in Microfluidic-Based Point-of-care Testing (POCT) Diagnoses. In Nanotechnology and Microfluidics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020.
Annabestani, M.; Esmaeili-dokht, P.; Nejad, S.K.; Fardmanesh, M. NAFAS: Non-Rigid Air Flow Active Sensor, a Cost-Effective, Wearable, and Ubiquitous. IEEE Sens. J. 2021, 21, 9530–9537.
Kanakasabapathy, M.K.; Sadasivam, M.; Singh, A.; Preston, C.; Thirumalaraju, P.; Venkataraman, M.; Bormann, C.L.; Draz, M.S.; Petrozza, J.C.; Shafiee, H. An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci. Trans. Med. 2017, 7863, eaai7863.
Nelson, J.M.; Griffin, E.G. The influence of certain substances on the activity of invertase. J. Am. Chem. Soc. 1916, 38, 722–730.
Nelson, J.M.; Griffin, E.G. Adsorption of invertase. J. Am. Chem. Soc. 1916, 38, 1109–1115.
Hughes, W.S. The potential difference between glass and electrolytes in contact with the glass. J. Am. Chem. Soc. 1922, 44, 2860–2867.
Heineman, W.R.; Jensen, W.B. Leland c. Clark Jr. (1918–2005). Biosens. Bioelectron. 2006, 21, 1403–1404.
Clark, L.C.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45.
Updike, S.J.; Hicks, G.P. The Enzyme Electrode. Nature 1967, 214, 986–988.
Bergveld, P. Development of an Ion-Sensitive Solid-State. IEEE Trans. Biomed. Eng. 1970, BME-17, 70–71.
Guilbault, G.G.; Lubrano, G.J. An enzyme electrode for the amperometric determination of glucose. Anal. Chim. Acta 1973, 64, 439–455.
Mosbach, K.; Danielsson, B. An enzyme thermistor. Biochim. Biophys. Acta-Enzymol. 1974, 364, 140–145.
Miller, B.V.; Limes, R.W. Recent Advances in Particle Size Measurements: A Critical Review. Crit. Rev. Anal. Chem. 1988, 20, 75–116.
Brückel, J.; Zier, H.; Kerner, W.; Pfeiffer, E. Progress in Practical Endocrinology. Horm. Metab. Res. 1990, 22, 382–384.
Falkowski, P.G.; LaRoche, J. Acclimation to spectral irradiance in algae. J. Phycol. 1991, 27, 8–14.
Peterson, J.I. Fiber optic pH sensor for gastric measurements-preliminary results. In Proceedings of the Fiber Optic Sensors in Medical Diagnostics, Los Angeles, CA, USA, 21 May 1993; Volume 1886, pp. 109–117.
Schultz, J.S.; Mansouri, S.; Goldstein, I.J. Affinity sensor: A new technique for developing implantable sensors for glucose and other metabolites. Diabetes Care 1982, 5, 245–253.
Liedberg, B.; Nylander, C.; Lunström, I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 1983, 4, 299–304.
Roederer, J.E.; Bastiaans, G.J. Microgravimetric Immunoassay with Piezoelectric Crystals. Anal. Chem. 1983, 55, 2333–2336.
D’Orazio, P. Biosensors in clinical chemistry. Clin. Chim. Acta 2003, 334, 41–69.
Yoo, E.H.; Lee, S.Y. Glucose biosensors: An overview of use in clinical practice. Sensors 2010, 10, 4558–4576.
Gribi, S.; du Bois de Dunilac, S.; Ghezzi, D.; Lacour, S.P. A microfabricated nerve-on-a-chip platform for rapid assessment of neural conduction in explanted peripheral nerve fibers. Nat. Commun. 2018, 9, 4403.
Kulkarni, M.B.; Enaganti, P.K.; Amreen, K.; Goel, S. Integrated Temperature Controlling Platform to Synthesize ZnO Nanoparticles and its Deposition on Al-Foil for Biosensing. IEEE Sens. J. 2021, 21, 9538–9545.
Bhatt, G.; Bhattacharya, S. Biosensors on chip: A critical review from an aspect of micro/nanoscales. J. Micromanuf. 2019, 2, 198–219.
Simonian, A.L.; Grimsley, J.K.; Flounders, A.W.; Schoeniger, J.S.; Cheng, T.C.; DeFrank, J.J.; Wild, J.R. Enzyme-based biosensor for the direct detection of fluorine-containing organophosphates. Anal. Chim. Acta 2001, 442, 15–23.
Skottrup, P.D.; Nicolaisen, M.; Justesen, A.F. Towards on-site pathogen detection using antibody-based sensors. Biosens. Bioelectron. 2008, 24, 339–348.
Kalita, P.; Singh, J.; Kumar Singh, M.; Solanki, P.R.; Sumana, G.; Malhotra, B.D. Ring like self assembled Ni nanoparticles based biosensor for food toxin detection. Appl. Phys. Lett. 2012, 100, 093702.
Kulkarni, M.B.; Goel, S. Microfluidic devices for synthesizing nanomaterials—A review. Nano Express 2020, 1, 032004.
Kulkarni, M.B.; Goel, S. A Review on Recent Advancements in Chamber-Based Microfluidic PCR Devices. In Microelectronics and Signal Processing; CRC Press: Boca Raton, FL, USA, 2021; pp. 49–70.
Kulkarni, M.B.; US, J.; Amreen, K.; Goel, S. Portable Thermal Management Platform for Synthesis of ZnO Nanoparticle in a Microfluidic Device: Validated for Electrochemical Sensing and Glucose Fuel Cell Applications. IEEE Trans. Electron Devices 2021, 68, 4070–4076.
Kulkarni, M.B.; Velmurugan, K.; Prasanth, E.; Amreen, K.; Nirmal, J.; Goel, S. Smartphone enabled miniaturized temperature controller platform to synthesize nio/cuo nanoparticles for electrochemical sensing and nanomicelles for ocular drug delivery applications. Biomed. Microdevices 2021, 23, 31.
Draz, M.S.; Vasan, A.; Muthupandian, A.; Kanakasabapathy, M.K.; Thirumalaraju, P.; Sreeram, A.; Krishnakumar, S.; Yogesh, V.; Lin, W.; Yu, X.G.; et al. Virus detection using nanoparticles and deep neural network–enabled smartphone system. Sci. Adv. 2020, 6, eabd5354.
Niu, X.; Zhong, Y.; Chen, R.; Wang, F.; Liu, Y.; Luo, D. A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles. Sens. Actuators B Chem. 2018, 255, 1577–1581.
Basiri, S.; Mehdinia, A.; Jabbari, A. A sensitive triple colorimetric sensor based on plasmonic response quenching of green synthesized silver nanoparticles for determination of Fe2+, hydrogen peroxide, and glucose. Colloids Surf. A Physicochem. Eng. Asp. 2018, 545, 138–146.
Wei, Y.P.; Zhang, Y.W.; Mao, C.J. A silver nanoparticle-assisted signal amplification electrochemiluminescence biosensor for highly sensitive detection of mucin 1. J. Mater. Chem. B 2020, 8, 2471–2475.
Liu, X.; Zhang, J.; Liu, S.; Zhang, Q.; Liu, X.; Wong, D.K.Y. Gold nanoparticle encapsulated-tubular TIO2 nanocluster as a scaffold for development of thiolated enzyme biosensors. Anal. Chem. 2013, 85, 4350–4356.
Yang, Q.; Li, N.; Li, Q.; Chen, S.; Wang, H.L.; Yang, H. Amperometric sarcosine biosensor based on hollow magnetic Pt–Fe3O4@C nanospheres. Anal. Chim. Acta 2019, 1078, 161–167.
Jia, W.; Su, L.; Lei, Y. Pt nanoflower/polyaniline composite nanofibers based urea biosensor. Biosens. Bioelectron. 2011, 30, 158–164.
Akhtar, N.; Metkar, S.K.; Girigoswami, A.; Girigoswami, K. ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Mater. Sci. Eng. C 2017, 78, 960–968.
Tian, J.; Li, Y.; Dong, J.; Huang, M.; Lu, J. Photoelectrochemical TiO2 nanotube arrays biosensor for asulam determination based on in-situ generation of quantum dots. Biosens. Bioelectron. 2018, 110, 1–7.
Vermeir, S.; Nicolaï, B.M.; Verboven, P.; Van Gerwen, P.; Baeten, B.; Hoflack, L.; Vulsteke, V.; Lammertyn, J. Microplate differential calorimetric biosensor for ascorbic acid analysis in food and pharmaceuticals. Anal. Chem. 2007, 79, 6119–6127.
Zheng, Y.H.; Hua, T.C.; Sun, D.W.; Xiao, J.J.; Xu, F.; Wang, F.F. Detection of dichlorvos residue by flow injection calorimetric biosensor based on immobilized chicken liver esterase. J. Food Eng. 2006, 74, 24–29.
Wang, L.; Sipe, D.M.; Xu, Y.; Lin, Q. A MEMS thermal biosensor for metabolic monitoring applications. J. Microelectromech. Syst. 2008, 17, 318–327.
Diculescu, V.C.; Chiorcea-Paquim, A.M.; Oliveira-Brett, A.M. Applications of a DNA-electrochemical biosensor. TrAC Trends Anal. Chem. 2016, 79, 23–36.
Koncki, R. Recent developments in potentiometric biosensors for biomedical analysis. Anal. Chim. Acta 2007, 599, 7–15.
Chouteau, C.; Dzyadevych, S.; Chovelon, J.M.; Durrieu, C. Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae. Biosens. Bioelectron. 2004, 19, 1089–1096.
Chuang, Y.H.; Chang, Y.T.; Liu, K.L.; Chang, H.Y.; Yew, T.R. Electrical impedimetric biosensors for liver function detection. Biosens. Bioelectron. 2011, 28, 368–372.
Stobiecka, A.; Radecka, H.; Radecki, J. Novel voltammetric biosensor for determining acrylamide in food samples. Biosens. Bioelectron. 2007, 22, 2165–2170.
Becker, B.; Cooper, M.A. A survey of the 2006–2009 quartz crystal microbalance biosensor literature. J. Mol. Recognit. 2011, 24, 754–787.
Lee, Y.O.; Chen, F.; Keun, K.; Kadota, M.; Tanaka, S.; Maka, M.; Martowicz, A. An Analysis of an Equivalent Circuit Model for an Interdigital Surface-Acoustic-Wave Transducer. J. Appl. Phys. 1988, 27, 163.
Yoo, S.M.; Lee, S.Y. Optical Biosensors for the Detection of Pathogenic Microorganisms. Trends Biotechnol. 2016, 34, 7–25.
Baird, C.L.; Myszka, D.G. Current and emerging commercial optical biosensors. J. Mol. Recognit. 2001, 14, 261–268.
Cross, G.H.; Reeves, A.A.; Brand, S.; Popplewell, J.F.; Peel, L.L.; Swann, M.J.; Freeman, N.J. A new quantitative optical biosensor for protein characterisation. Biosens. Bioelectron. 2003, 19, 383–390.
Chen, Y.T.; Lee, Y.C.; Lai, Y.H.; Lim, J.C.; Huang, N.T.; Lin, C.T.; Huang, J.J. Review of Integrated Optical Biosensors for Point-Of-Care Applications. Biosensors 2020, 10, 209.
Yang, Y.; Zhang, H.; Chen, J.; Lee, S.; Hou, T.C.; Wang, Z.L. Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self-powered biosensors and personal electronics. Energy Environ. Sci. 2013, 6, 1744–1749.
Tamayo, J.; Kosaka, P.M.; Ruz, J.J.; Paulo, Á.S.; Calleja, M. Biosensors based on nanomechanical systems. Chem. Soc. Rev. 2013, 42, 1287–1311.
Duocastella, M.; Fernández-Pradas, J.M.; Morenza, J.L.; Zafra, D.; Serra, P. Novel laser printing technique for miniaturized biosensors preparation. Sens. Actuators B Chem. 2010, 145, 596–600.
Duocastella, M.; Fernández-Pradas, J.M.; Serra, P.; Morenza, J.L. Laser-induced forward transfer of liquids for miniaturized biosensors preparation. J. Laser Micro Nanoeng. 2008, 3, 1–4.
Sung, W.J.; Bae, Y.H. Glucose oxidase, lactate oxidase, and galactose oxidase enzyme electrode based on polypyrrole with polyanion/PEG/enzyme conjugate dopant. Sens. Actuators B Chem. 2006, 114, 164–169.
Ahmad, R.; Tripathy, N.; Jang, N.K.; Khang, G.; Hahn, Y.B. Fabrication of highly sensitive uric acid biosensor based on directly grown ZnO nanosheets on electrode surface. Sens. Actuators B Chem. 2015, 206, 146–151.
Zhou, X.; Liu, L.; Hu, M.; Wang, L.; Hu, J. Detection of hepatitis B virus by piezoelectric biosensor. J. Pharm. Biomed. Anal. 2002, 27, 341–345.
Pundir, C.S.; Chauhan, N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Anal. Biochem. 2012, 429, 19–31.
Ahmadi, A.; Kabiri, S.; Omidfar, K. Advances in HbA1c Biosensor Development Based on Field Effect Transistors: A Review. IEEE Sens. J. 2020, 20, 8912–8921.
Jung, J.H.; Cheon, D.S.; Liu, F.; Lee, K.B.; Seo, T.S. A Graphene Oxide Based Immuno-biosensor for Pathogen Detection. Angew. Chem. 2010, 122, 5844–5847.
Nehra, A.; Pal Singh, K. Current trends in nanomaterial embedded field effect transistor-based biosensor. Biosens. Bioelectron. 2015, 74, 731–743.
Liss, M.; Petersen, B.; Wolf, H.; Prohaska, E. An aptamer-based quartz crystal protein biosensor. Anal. Chem. 2002, 74, 4488–4495.
Juan-Colás, J.; Parkin, A.; Dunn, K.E.; Scullion, M.G.; Krauss, T.F.; Johnson, S.D. The electrophotonic silicon biosensor. Nat. Commun. 2016, 7, 12769.
Mateescu, A.; Wang, Y.; Dostalek, J.; Jonas, U. Thin hydrogel films for optical biosensor applications. Membranes 2012, 2, 49–69.
Radke, S.M.; Alocilja, E.C. A microfabricated biosensor for detecting foodborne bioterrorism agents. IEEE Sens. J. 2005, 5, 744–750.
Mǎdǎraş, M.B.; Popescu, I.C.; Ufer, S.; Buck, R.P. Microfabricated amperometric creatine and creatinine biosensors. Anal. Chim. Acta 1996, 319, 335–345.
Rahman, B.M.A.; Viphavakit, C.; Chitaree, R.; Ghosh, S.; Pathak, A.K.; Verma, S.; Sakda, N. Optical Fiber, Nanomaterial, and THz-Metasurface-Mediated Nano-Biosensors: A Review. Biosensors 2022, 12, 42.
Srivastava, R.; Prajapati, Y.K.; Pal, S.; Kumar, S. Micro-channel Plasmon Sensor Based on a DShaped Photonic Crystal Fiber for Malaria Diagnosis With Improved Performance. IEEE Sens. J. 2022.
Kaur, B.; Kumar, S.; Kaushik, B.K. MXenes-Based Fiber-Optic SPR Sensor for Colorectal Cancer Diagnosis. IEEE Sens. J. 2022, 22, 6661–6668.
Pathak, A.K.; Rahman, B.M.A.; Viphavakit, C. Nanowire embedded micro-drilled dual-channel approach to develop highly sensitive biosensor. IEEE Photonics Technol. Lett. 2022, 34, 707–710.
Pathak, A.K.; Rahman, B.M.A.; Singh, V.K.; Kumari, S. Sensitivity enhancement of a concave shaped optical fiber refractive index sensor covered with multiple au nanowires. Sensors 2019, 19, 4210.
Pathak, A.K.; Singh, V.K. SPR Based Optical Fiber Refractive Index Sensor Using Silver Nanowire Assisted CSMFC. IEEE Photonics Technol. Lett. 2020, 32, 465–468.
Annabestani, M. An Intelligent Machine Learning-Based Sheath-free Microfluidic Impedance Flow cytometer. In Proceedings of the 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 29–30 October 2020; pp. 284–288.
Ali, S.; Hassan, A.; Hassan, G.; Eun, C.H.; Bae, J.; Lee, C.H.; Kim, I.J. Disposable all-printed electronic biosensor for instantaneous detection and classification of pathogens. Sci. Rep. 2018, 8, 5920.
Ballacchino, G.; Weaver, E.; Mathew, E.; Dorati, R.; Genta, I.; Conti, B.; Lamprou, D.A. Manufacturing of 3d-printed microfluidic devices for the synthesis of drug-loaded liposomal formulations. Int. J. Mol. Sci. 2021, 22, 8064.
Lee, D.S.; Park, S.H.; Chung, K.H.; Pyo, H.B. A disposable plastic-silicon micro PCR chip using flexible printed circuit board protocols and its application to genomic DNA amplification. IEEE Sens. J. 2008, 8, 558–564.
Felix, F.S.; Baccaro, A.L.B.; Angnes, L. Disposable voltammetric immunosensors integrated with Microfluidic Platforms for Biomedical, Agricultural and Food Analyses: A Review. Sensors 2018, 18, 4124.
Das, S.; Srivastava, V.C. Microfluidic-based photocatalytic microreactor for environmental application: A review of fabrication substrates and techniques, and operating parameters. Photochem. Photobiol. Sci. 2016, 15, 714–730.
Joung, S.; Kim, J.; Choi, Y.J.; Kang, C.J.; Kim, Y. ITO-coated glass/polydimethylsiloxane. In Proceedings of the 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand, 16–19 January 2007; pp. 691–694.
Mankar, C.; Rewatkar, P.; Dhone, M.; Balpande, S.; Kalambe, J.; Pande, R.; Goel, S. Paper Based Microfluidic Microbial Fuel Cell to Harvest Energy from Urine. Sens. Lett. 2019, 17, 69–74.
Kakaei, K.; Esrafili, M.D.; Ehsani, A. Graphene-Based Electrochemical Supercapacitors. Interface Sci. Technol. 2019, 27, 339–386.
Raj, M.K.; Chakraborty, S. PDMS microfluidics: A mini review. J. Appl. Polym. Sci. 2020, 137, 48958.
Hong, T.F.; Ju, W.J.; Wu, M.C.; Tai, C.H.; Tsai, C.H.; Fu, L.M. Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser. Microfluid. Nanofluid. 2010, 9, 1125–1133.
Xuan, X.; Hossain, M.F.; Park, J.Y. A Fully Integrated and Miniaturized Heavy-metal-detection Sensor Based on Micro-patterned Reduced Graphene Oxide. Sci. Rep. 2016, 6, 33125.
Yao, Y.; Zhang, C. A novel one-step fabricated, droplet-based electrochemical sensor for facile biochemical assays. Sensors 2016, 16, 5–15.
Wang, X.; Gartia, M.R.; Jiang, J.; Chang, T.W.; Qian, J.; Liu, Y.; Liu, X.; Liu, G.L. Audio jack based miniaturized mobile phone electrochemical sensing platform. Sens. Actuators B Chem. 2015, 209, 677–685.
Holah, J.T. Industrial Monitoring: Hygiene in Food Processing. In Biofilms—Science and Technology; Springer: Dordrecht, The Netherlands, 1992; pp. 645–659.
McHugh, A.J.; Yap, M.; Crispie, F.; Feehily, C.; Hill, C.; Cotter, P.D. Microbiome-based environmental monitoring of a dairy processing facility highlights the challenges associated with low microbial-load samples. NPJ Sci. Food 2021, 5, 4.
Beno, S.M.; Stasiewicz, M.J.; Andrus, A.D.; Ralyea, R.D.; Kent, D.J.; Martin, N.H.; Wiedmann, M.; Boor, K.J. Development and validation of pathogen environmental monitoring programs for small cheese processing facilities. J. Food Prot. 2016, 79, 2095–2106.
Radke, S.M.; Alocilja, E.C. A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosens. Bioelectron. 2005, 20, 1662–1667.
Leong, D.; Alvarez-Ordóñez, A.; Jordan, K. Monitoring occurrence and persistence of Listeria monocytogenes in foods and food processing environments in the Republic of Ireland. Front. Microbiol. 2014, 5, 436.
Meshram, B.D.; Agrawal, A.K.; Adil, S.; Ranvir, S.; Sande, K.K. Biosensor and its Application in Food and Dairy Industry: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3305–3324.
Rhouati, A.; Hayat, A.; Hernandez, D.B.; Meraihi, Z.; Munoz, R.; Marty, J.L. Development of an automated flow-based electrochemical aptasensor for on-line detection of Ochratoxin A. Sens. Actuators B Chem. 2013, 176, 1160–1166.
Roisen, F.I.; Murphy, R.A.; Pichichero, M.E.; Braden, W.G. Cyclic adenosine monophosphate stimulation of axonal elongation. Science 1972, 175, 73–74.
Shokr, A.; Pacheco, L.G.C.; Thirumalaraju, P.; Kanakasabapathy, M.K.; Gandhi, J.; Kartik, D.; Silva, F.S.R.; Erdogmus, E.; Kandula, H.; Luo, S.; et al. Enabled with Adaptive Adversarial Learning. ACS Nano 2020, 15, 665–673.
Justino, C.I.L.; Duarte, A.C.; Rocha-Santos, T.A.P. Critical overview on the application of sensors and biosensors for clinical analysis. TrAC Trends Anal. Chem. 2016, 85, 36–60.
Chen, Y.W.; Liu, M.; Kaneko, T.; McIntyre, P.C. Atomic layer deposited hafnium oxide gate dielectrics for charge-based biosensors. Electrochem. Solid-State Lett. 2010, 13, G29.
Bergveld, P. The development and application of rapid. Biosensors 1986, 2, 15–33.
Ariffin, S.A.B.; Adam, T.; Hashim, U.; Faridah, S.; Zamri, I.; Uda, M.N.A. Plant diseases detection using nanowire as biosensor transducer. Adv. Mater. Res. 2014, 832, 113–117.
Giepmans, B.N.G.; Adams, S.R.; Ellisman, M.H.; Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 2006, 312, 217–224.
Evanko, D.S.; Haydon, P.G. Elimination of environmental sensitivity in a cameleon FRET-based calcium sensor via replacement of the acceptor with Venus. Cell Calcium 2005, 37, 341–348.
Lee, W.G.; Kim, Y.G.; Chung, B.G.; Demirci, U.; Khademhosseini, A. Nano/Microfluidics for diagnosis of infectious diseases in developing countries. Adv. Drug Deliv. Rev. 2010, 62, 449–457.
Prakash, R.; Kaler, K.V.I.S. An integrated genetic analysis microfluidic platform with valves and a PCR chip reusability method to avoid contamination. Microfluid. Nanofluid. 2007, 3, 177–187.
Sriram, G.; Bhat, M.P.; Patil, P.; Uthappa, U.T.; Jung, H.Y.; Altalhi, T.; Kumeria, T.; Aminabhavi, T.M.; Pai, R.K.; Madhuprasad; et al. Paper-based microfluidic analytical devices for colorimetric detection of toxic ions: A review. TrAC Trends Anal. Chem. 2017, 93, 212–227.
Wang, J. Glucose biosensors: 40 Years of advances and challenges. Electroanalysis 2001, 13, 983–988.
Lee, M.; Zine, N.; Baraket, A.; Zabala, M.; Campabadal, F.; Caruso, R.; Trivella, M.G.; Jaffrezic-Renault, N.; Errachid, A. A novel biosensor based on hafnium oxide: Application for early stage detection of human interleukin-10. Sens. Actuators B Chem. 2012, 175, 201–207.
Mehrotra, P. Biosensors and their applications—A review. J. Oral Biol. Craniofacial Res. 2016, 6, 153–159.
Vigneshvar, S.; Sudhakumari, C.C.; Senthilkumaran, B.; Prakash, H. Recent advances in biosensor technology for potential applications—An overview. Front. Bioeng. Biotechnol. 2016, 4, 11.
Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 2021, 21, 1109.
Puneeth, S.B.; Kulkarni, M.B.; Goel, S. Microfluidic viscometers for biochemical and biomedical applications: A review. Eng. Res. Express 2021, 3, 022003.
Kulkarni, M.B.; Goyal, S.; Dhar, A.; Sriram, D.; Goel, S. Miniaturized and IoT enabled Continuous-flow based Microfluidic PCR Device for DNA Amplification. IEEE Trans. Nanobiosci. 2021, 21, 97–104.
Kulkarni, M.B.; Goel, S. Miniaturized DNA amplification platform with soft-lithographically fabricated continuous-flow PCR microfluidic device on a portable temperature controller. Microfluid. Nanofluid. 2021, 25, 69.
Kwon, S.H.; Lee, S.; Jang, J.; Seo, Y.; Lim, H.Y. A point-of-care diagnostic system to influenza viruses using chip-based ultra-fast PCR. J. Med. Virol. 2018, 90, 1019–1026.
Wang, D.; Chan, H.N.; Liu, Z.; Micheal, S.; Li, L.; Baniani, D.B.; Tan, M.J.A.; Huang, L.; Wang, J. Recent Developments in Microfluidic-Based Point-of-care Testing (POCT) Diagnoses. In Nanotechnology and Microfluidics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020.
Annabestani, M.; Esmaeili-dokht, P.; Nejad, S.K.; Fardmanesh, M. NAFAS: Non-Rigid Air Flow Active Sensor, a Cost-Effective, Wearable, and Ubiquitous. IEEE Sens. J. 2021, 21, 9530–9537.
Kanakasabapathy, M.K.; Sadasivam, M.; Singh, A.; Preston, C.; Thirumalaraju, P.; Venkataraman, M.; Bormann, C.L.; Draz, M.S.; Petrozza, J.C.; Shafiee, H. An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci. Trans. Med. 2017, 7863, eaai7863.
Nelson, J.M.; Griffin, E.G. The influence of certain substances on the activity of invertase. J. Am. Chem. Soc. 1916, 38, 722–730.
Nelson, J.M.; Griffin, E.G. Adsorption of invertase. J. Am. Chem. Soc. 1916, 38, 1109–1115.
Hughes, W.S. The potential difference between glass and electrolytes in contact with the glass. J. Am. Chem. Soc. 1922, 44, 2860–2867.
Heineman, W.R.; Jensen, W.B. Leland c. Clark Jr. (1918–2005). Biosens. Bioelectron. 2006, 21, 1403–1404.
Clark, L.C.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45.
Updike, S.J.; Hicks, G.P. The Enzyme Electrode. Nature 1967, 214, 986–988.
Bergveld, P. Development of an Ion-Sensitive Solid-State. IEEE Trans. Biomed. Eng. 1970, BME-17, 70–71.
Guilbault, G.G.; Lubrano, G.J. An enzyme electrode for the amperometric determination of glucose. Anal. Chim. Acta 1973, 64, 439–455.
Mosbach, K.; Danielsson, B. An enzyme thermistor. Biochim. Biophys. Acta-Enzymol. 1974, 364, 140–145.
Miller, B.V.; Limes, R.W. Recent Advances in Particle Size Measurements: A Critical Review. Crit. Rev. Anal. Chem. 1988, 20, 75–116.
Brückel, J.; Zier, H.; Kerner, W.; Pfeiffer, E. Progress in Practical Endocrinology. Horm. Metab. Res. 1990, 22, 382–384.
Falkowski, P.G.; LaRoche, J. Acclimation to spectral irradiance in algae. J. Phycol. 1991, 27, 8–14.
Peterson, J.I. Fiber optic pH sensor for gastric measurements-preliminary results. In Proceedings of the Fiber Optic Sensors in Medical Diagnostics, Los Angeles, CA, USA, 21 May 1993; Volume 1886, pp. 109–117.
Schultz, J.S.; Mansouri, S.; Goldstein, I.J. Affinity sensor: A new technique for developing implantable sensors for glucose and other metabolites. Diabetes Care 1982, 5, 245–253.
Liedberg, B.; Nylander, C.; Lunström, I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 1983, 4, 299–304.
Roederer, J.E.; Bastiaans, G.J. Microgravimetric Immunoassay with Piezoelectric Crystals. Anal. Chem. 1983, 55, 2333–2336.
D’Orazio, P. Biosensors in clinical chemistry. Clin. Chim. Acta 2003, 334, 41–69.
Yoo, E.H.; Lee, S.Y. Glucose biosensors: An overview of use in clinical practice. Sensors 2010, 10, 4558–4576.
Gribi, S.; du Bois de Dunilac, S.; Ghezzi, D.; Lacour, S.P. A microfabricated nerve-on-a-chip platform for rapid assessment of neural conduction in explanted peripheral nerve fibers. Nat. Commun. 2018, 9, 4403.
Kulkarni, M.B.; Enaganti, P.K.; Amreen, K.; Goel, S. Integrated Temperature Controlling Platform to Synthesize ZnO Nanoparticles and its Deposition on Al-Foil for Biosensing. IEEE Sens. J. 2021, 21, 9538–9545.
Bhatt, G.; Bhattacharya, S. Biosensors on chip: A critical review from an aspect of micro/nanoscales. J. Micromanuf. 2019, 2, 198–219.
Simonian, A.L.; Grimsley, J.K.; Flounders, A.W.; Schoeniger, J.S.; Cheng, T.C.; DeFrank, J.J.; Wild, J.R. Enzyme-based biosensor for the direct detection of fluorine-containing organophosphates. Anal. Chim. Acta 2001, 442, 15–23.
Skottrup, P.D.; Nicolaisen, M.; Justesen, A.F. Towards on-site pathogen detection using antibody-based sensors. Biosens. Bioelectron. 2008, 24, 339–348.
Kalita, P.; Singh, J.; Kumar Singh, M.; Solanki, P.R.; Sumana, G.; Malhotra, B.D. Ring like self assembled Ni nanoparticles based biosensor for food toxin detection. Appl. Phys. Lett. 2012, 100, 093702.
Kulkarni, M.B.; Goel, S. Microfluidic devices for synthesizing nanomaterials—A review. Nano Express 2020, 1, 032004.
Kulkarni, M.B.; Goel, S. A Review on Recent Advancements in Chamber-Based Microfluidic PCR Devices. In Microelectronics and Signal Processing; CRC Press: Boca Raton, FL, USA, 2021; pp. 49–70.
Kulkarni, M.B.; US, J.; Amreen, K.; Goel, S. Portable Thermal Management Platform for Synthesis of ZnO Nanoparticle in a Microfluidic Device: Validated for Electrochemical Sensing and Glucose Fuel Cell Applications. IEEE Trans. Electron Devices 2021, 68, 4070–4076.
Kulkarni, M.B.; Velmurugan, K.; Prasanth, E.; Amreen, K.; Nirmal, J.; Goel, S. Smartphone enabled miniaturized temperature controller platform to synthesize nio/cuo nanoparticles for electrochemical sensing and nanomicelles for ocular drug delivery applications. Biomed. Microdevices 2021, 23, 31.
Draz, M.S.; Vasan, A.; Muthupandian, A.; Kanakasabapathy, M.K.; Thirumalaraju, P.; Sreeram, A.; Krishnakumar, S.; Yogesh, V.; Lin, W.; Yu, X.G.; et al. Virus detection using nanoparticles and deep neural network–enabled smartphone system. Sci. Adv. 2020, 6, eabd5354.
Niu, X.; Zhong, Y.; Chen, R.; Wang, F.; Liu, Y.; Luo, D. A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles. Sens. Actuators B Chem. 2018, 255, 1577–1581.
Basiri, S.; Mehdinia, A.; Jabbari, A. A sensitive triple colorimetric sensor based on plasmonic response quenching of green synthesized silver nanoparticles for determination of Fe2+, hydrogen peroxide, and glucose. Colloids Surf. A Physicochem. Eng. Asp. 2018, 545, 138–146.
Wei, Y.P.; Zhang, Y.W.; Mao, C.J. A silver nanoparticle-assisted signal amplification electrochemiluminescence biosensor for highly sensitive detection of mucin 1. J. Mater. Chem. B 2020, 8, 2471–2475.
Liu, X.; Zhang, J.; Liu, S.; Zhang, Q.; Liu, X.; Wong, D.K.Y. Gold nanoparticle encapsulated-tubular TIO2 nanocluster as a scaffold for development of thiolated enzyme biosensors. Anal. Chem. 2013, 85, 4350–4356.
Yang, Q.; Li, N.; Li, Q.; Chen, S.; Wang, H.L.; Yang, H. Amperometric sarcosine biosensor based on hollow magnetic Pt–Fe3O4@C nanospheres. Anal. Chim. Acta 2019, 1078, 161–167.
Jia, W.; Su, L.; Lei, Y. Pt nanoflower/polyaniline composite nanofibers based urea biosensor. Biosens. Bioelectron. 2011, 30, 158–164.
Akhtar, N.; Metkar, S.K.; Girigoswami, A.; Girigoswami, K. ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Mater. Sci. Eng. C 2017, 78, 960–968.
Tian, J.; Li, Y.; Dong, J.; Huang, M.; Lu, J. Photoelectrochemical TiO2 nanotube arrays biosensor for asulam determination based on in-situ generation of quantum dots. Biosens. Bioelectron. 2018, 110, 1–7.
Vermeir, S.; Nicolaï, B.M.; Verboven, P.; Van Gerwen, P.; Baeten, B.; Hoflack, L.; Vulsteke, V.; Lammertyn, J. Microplate differential calorimetric biosensor for ascorbic acid analysis in food and pharmaceuticals. Anal. Chem. 2007, 79, 6119–6127.
Zheng, Y.H.; Hua, T.C.; Sun, D.W.; Xiao, J.J.; Xu, F.; Wang, F.F. Detection of dichlorvos residue by flow injection calorimetric biosensor based on immobilized chicken liver esterase. J. Food Eng. 2006, 74, 24–29.
Wang, L.; Sipe, D.M.; Xu, Y.; Lin, Q. A MEMS thermal biosensor for metabolic monitoring applications. J. Microelectromech. Syst. 2008, 17, 318–327.
Diculescu, V.C.; Chiorcea-Paquim, A.M.; Oliveira-Brett, A.M. Applications of a DNA-electrochemical biosensor. TrAC Trends Anal. Chem. 2016, 79, 23–36.
Koncki, R. Recent developments in potentiometric biosensors for biomedical analysis. Anal. Chim. Acta 2007, 599, 7–15.
Chouteau, C.; Dzyadevych, S.; Chovelon, J.M.; Durrieu, C. Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae. Biosens. Bioelectron. 2004, 19, 1089–1096.
Chuang, Y.H.; Chang, Y.T.; Liu, K.L.; Chang, H.Y.; Yew, T.R. Electrical impedimetric biosensors for liver function detection. Biosens. Bioelectron. 2011, 28, 368–372.
Stobiecka, A.; Radecka, H.; Radecki, J. Novel voltammetric biosensor for determining acrylamide in food samples. Biosens. Bioelectron. 2007, 22, 2165–2170.
Becker, B.; Cooper, M.A. A survey of the 2006–2009 quartz crystal microbalance biosensor literature. J. Mol. Recognit. 2011, 24, 754–787.
Lee, Y.O.; Chen, F.; Keun, K.; Kadota, M.; Tanaka, S.; Maka, M.; Martowicz, A. An Analysis of an Equivalent Circuit Model for an Interdigital Surface-Acoustic-Wave Transducer. J. Appl. Phys. 1988, 27, 163.
Yoo, S.M.; Lee, S.Y. Optical Biosensors for the Detection of Pathogenic Microorganisms. Trends Biotechnol. 2016, 34, 7–25.
Baird, C.L.; Myszka, D.G. Current and emerging commercial optical biosensors. J. Mol. Recognit. 2001, 14, 261–268.
Cross, G.H.; Reeves, A.A.; Brand, S.; Popplewell, J.F.; Peel, L.L.; Swann, M.J.; Freeman, N.J. A new quantitative optical biosensor for protein characterisation. Biosens. Bioelectron. 2003, 19, 383–390.
Chen, Y.T.; Lee, Y.C.; Lai, Y.H.; Lim, J.C.; Huang, N.T.; Lin, C.T.; Huang, J.J. Review of Integrated Optical Biosensors for Point-Of-Care Applications. Biosensors 2020, 10, 209.
Yang, Y.; Zhang, H.; Chen, J.; Lee, S.; Hou, T.C.; Wang, Z.L. Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self-powered biosensors and personal electronics. Energy Environ. Sci. 2013, 6, 1744–1749.
Tamayo, J.; Kosaka, P.M.; Ruz, J.J.; Paulo, Á.S.; Calleja, M. Biosensors based on nanomechanical systems. Chem. Soc. Rev. 2013, 42, 1287–1311.
Duocastella, M.; Fernández-Pradas, J.M.; Morenza, J.L.; Zafra, D.; Serra, P. Novel laser printing technique for miniaturized biosensors preparation. Sens. Actuators B Chem. 2010, 145, 596–600.
Duocastella, M.; Fernández-Pradas, J.M.; Serra, P.; Morenza, J.L. Laser-induced forward transfer of liquids for miniaturized biosensors preparation. J. Laser Micro Nanoeng. 2008, 3, 1–4.
Sung, W.J.; Bae, Y.H. Glucose oxidase, lactate oxidase, and galactose oxidase enzyme electrode based on polypyrrole with polyanion/PEG/enzyme conjugate dopant. Sens. Actuators B Chem. 2006, 114, 164–169.
Ahmad, R.; Tripathy, N.; Jang, N.K.; Khang, G.; Hahn, Y.B. Fabrication of highly sensitive uric acid biosensor based on directly grown ZnO nanosheets on electrode surface. Sens. Actuators B Chem. 2015, 206, 146–151.
Zhou, X.; Liu, L.; Hu, M.; Wang, L.; Hu, J. Detection of hepatitis B virus by piezoelectric biosensor. J. Pharm. Biomed. Anal. 2002, 27, 341–345.
Pundir, C.S.; Chauhan, N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Anal. Biochem. 2012, 429, 19–31.
Ahmadi, A.; Kabiri, S.; Omidfar, K. Advances in HbA1c Biosensor Development Based on Field Effect Transistors: A Review. IEEE Sens. J. 2020, 20, 8912–8921.
Jung, J.H.; Cheon, D.S.; Liu, F.; Lee, K.B.; Seo, T.S. A Graphene Oxide Based Immuno-biosensor for Pathogen Detection. Angew. Chem. 2010, 122, 5844–5847.
Nehra, A.; Pal Singh, K. Current trends in nanomaterial embedded field effect transistor-based biosensor. Biosens. Bioelectron. 2015, 74, 731–743.
Liss, M.; Petersen, B.; Wolf, H.; Prohaska, E. An aptamer-based quartz crystal protein biosensor. Anal. Chem. 2002, 74, 4488–4495.
Juan-Colás, J.; Parkin, A.; Dunn, K.E.; Scullion, M.G.; Krauss, T.F.; Johnson, S.D. The electrophotonic silicon biosensor. Nat. Commun. 2016, 7, 12769.
Mateescu, A.; Wang, Y.; Dostalek, J.; Jonas, U. Thin hydrogel films for optical biosensor applications. Membranes 2012, 2, 49–69.
Radke, S.M.; Alocilja, E.C. A microfabricated biosensor for detecting foodborne bioterrorism agents. IEEE Sens. J. 2005, 5, 744–750.
Mǎdǎraş, M.B.; Popescu, I.C.; Ufer, S.; Buck, R.P. Microfabricated amperometric creatine and creatinine biosensors. Anal. Chim. Acta 1996, 319, 335–345.
Rahman, B.M.A.; Viphavakit, C.; Chitaree, R.; Ghosh, S.; Pathak, A.K.; Verma, S.; Sakda, N. Optical Fiber, Nanomaterial, and THz-Metasurface-Mediated Nano-Biosensors: A Review. Biosensors 2022, 12, 42.
Srivastava, R.; Prajapati, Y.K.; Pal, S.; Kumar, S. Micro-channel Plasmon Sensor Based on a DShaped Photonic Crystal Fiber for Malaria Diagnosis With Improved Performance. IEEE Sens. J. 2022.
Kaur, B.; Kumar, S.; Kaushik, B.K. MXenes-Based Fiber-Optic SPR Sensor for Colorectal Cancer Diagnosis. IEEE Sens. J. 2022, 22, 6661–6668.
Pathak, A.K.; Rahman, B.M.A.; Viphavakit, C. Nanowire embedded micro-drilled dual-channel approach to develop highly sensitive biosensor. IEEE Photonics Technol. Lett. 2022, 34, 707–710.
Pathak, A.K.; Rahman, B.M.A.; Singh, V.K.; Kumari, S. Sensitivity enhancement of a concave shaped optical fiber refractive index sensor covered with multiple au nanowires. Sensors 2019, 19, 4210.
Pathak, A.K.; Singh, V.K. SPR Based Optical Fiber Refractive Index Sensor Using Silver Nanowire Assisted CSMFC. IEEE Photonics Technol. Lett. 2020, 32, 465–468.
Annabestani, M. An Intelligent Machine Learning-Based Sheath-free Microfluidic Impedance Flow cytometer. In Proceedings of the 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 29–30 October 2020; pp. 284–288.
Ali, S.; Hassan, A.; Hassan, G.; Eun, C.H.; Bae, J.; Lee, C.H.; Kim, I.J. Disposable all-printed electronic biosensor for instantaneous detection and classification of pathogens. Sci. Rep. 2018, 8, 5920.
Ballacchino, G.; Weaver, E.; Mathew, E.; Dorati, R.; Genta, I.; Conti, B.; Lamprou, D.A. Manufacturing of 3d-printed microfluidic devices for the synthesis of drug-loaded liposomal formulations. Int. J. Mol. Sci. 2021, 22, 8064.
Lee, D.S.; Park, S.H.; Chung, K.H.; Pyo, H.B. A disposable plastic-silicon micro PCR chip using flexible printed circuit board protocols and its application to genomic DNA amplification. IEEE Sens. J. 2008, 8, 558–564.
Felix, F.S.; Baccaro, A.L.B.; Angnes, L. Disposable voltammetric immunosensors integrated with Microfluidic Platforms for Biomedical, Agricultural and Food Analyses: A Review. Sensors 2018, 18, 4124.
Das, S.; Srivastava, V.C. Microfluidic-based photocatalytic microreactor for environmental application: A review of fabrication substrates and techniques, and operating parameters. Photochem. Photobiol. Sci. 2016, 15, 714–730.
Joung, S.; Kim, J.; Choi, Y.J.; Kang, C.J.; Kim, Y. ITO-coated glass/polydimethylsiloxane. In Proceedings of the 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand, 16–19 January 2007; pp. 691–694.
Mankar, C.; Rewatkar, P.; Dhone, M.; Balpande, S.; Kalambe, J.; Pande, R.; Goel, S. Paper Based Microfluidic Microbial Fuel Cell to Harvest Energy from Urine. Sens. Lett. 2019, 17, 69–74.
Kakaei, K.; Esrafili, M.D.; Ehsani, A. Graphene-Based Electrochemical Supercapacitors. Interface Sci. Technol. 2019, 27, 339–386.
Raj, M.K.; Chakraborty, S. PDMS microfluidics: A mini review. J. Appl. Polym. Sci. 2020, 137, 48958.
Hong, T.F.; Ju, W.J.; Wu, M.C.; Tai, C.H.; Tsai, C.H.; Fu, L.M. Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser. Microfluid. Nanofluid. 2010, 9, 1125–1133.
Xuan, X.; Hossain, M.F.; Park, J.Y. A Fully Integrated and Miniaturized Heavy-metal-detection Sensor Based on Micro-patterned Reduced Graphene Oxide. Sci. Rep. 2016, 6, 33125.
Yao, Y.; Zhang, C. A novel one-step fabricated, droplet-based electrochemical sensor for facile biochemical assays. Sensors 2016, 16, 5–15.
Wang, X.; Gartia, M.R.; Jiang, J.; Chang, T.W.; Qian, J.; Liu, Y.; Liu, X.; Liu, G.L. Audio jack based miniaturized mobile phone electrochemical sensing platform. Sens. Actuators B Chem. 2015, 209, 677–685.
Holah, J.T. Industrial Monitoring: Hygiene in Food Processing. In Biofilms—Science and Technology; Springer: Dordrecht, The Netherlands, 1992; pp. 645–659.
McHugh, A.J.; Yap, M.; Crispie, F.; Feehily, C.; Hill, C.; Cotter, P.D. Microbiome-based environmental monitoring of a dairy processing facility highlights the challenges associated with low microbial-load samples. NPJ Sci. Food 2021, 5, 4.
Beno, S.M.; Stasiewicz, M.J.; Andrus, A.D.; Ralyea, R.D.; Kent, D.J.; Martin, N.H.; Wiedmann, M.; Boor, K.J. Development and validation of pathogen environmental monitoring programs for small cheese processing facilities. J. Food Prot. 2016, 79, 2095–2106.
Radke, S.M.; Alocilja, E.C. A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosens. Bioelectron. 2005, 20, 1662–1667.
Leong, D.; Alvarez-Ordóñez, A.; Jordan, K. Monitoring occurrence and persistence of Listeria monocytogenes in foods and food processing environments in the Republic of Ireland. Front. Microbiol. 2014, 5, 436.
Meshram, B.D.; Agrawal, A.K.; Adil, S.; Ranvir, S.; Sande, K.K. Biosensor and its Application in Food and Dairy Industry: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3305–3324.
Rhouati, A.; Hayat, A.; Hernandez, D.B.; Meraihi, Z.; Munoz, R.; Marty, J.L. Development of an automated flow-based electrochemical aptasensor for on-line detection of Ochratoxin A. Sens. Actuators B Chem. 2013, 176, 1160–1166.
Roisen, F.I.; Murphy, R.A.; Pichichero, M.E.; Braden, W.G. Cyclic adenosine monophosphate stimulation of axonal elongation. Science 1972, 175, 73–74.
Shokr, A.; Pacheco, L.G.C.; Thirumalaraju, P.; Kanakasabapathy, M.K.; Gandhi, J.; Kartik, D.; Silva, F.S.R.; Erdogmus, E.; Kandula, H.; Luo, S.; et al. Enabled with Adaptive Adversarial Learning. ACS Nano 2020, 15, 665–673.
Justino, C.I.L.; Duarte, A.C.; Rocha-Santos, T.A.P. Critical overview on the application of sensors and biosensors for clinical analysis. TrAC Trends Anal. Chem. 2016, 85, 36–60.
Chen, Y.W.; Liu, M.; Kaneko, T.; McIntyre, P.C. Atomic layer deposited hafnium oxide gate dielectrics for charge-based biosensors. Electrochem. Solid-State Lett. 2010, 13, G29.
Bergveld, P. The development and application of rapid. Biosensors 1986, 2, 15–33.
Ariffin, S.A.B.; Adam, T.; Hashim, U.; Faridah, S.; Zamri, I.; Uda, M.N.A. Plant diseases detection using nanowire as biosensor transducer. Adv. Mater. Res. 2014, 832, 113–117.
Giepmans, B.N.G.; Adams, S.R.; Ellisman, M.H.; Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 2006, 312, 217–224.
Evanko, D.S.; Haydon, P.G. Elimination of environmental sensitivity in a cameleon FRET-based calcium sensor via replacement of the acceptor with Venus. Cell Calcium 2005, 37, 341–348.
Lee, W.G.; Kim, Y.G.; Chung, B.G.; Demirci, U.; Khademhosseini, A. Nano/Microfluidics for diagnosis of infectious diseases in developing countries. Adv. Drug Deliv. Rev. 2010, 62, 449–457.
Prakash, R.; Kaler, K.V.I.S. An integrated genetic analysis microfluidic platform with valves and a PCR chip reusability method to avoid contamination. Microfluid. Nanofluid. 2007, 3, 177–187.
Sriram, G.; Bhat, M.P.; Patil, P.; Uthappa, U.T.; Jung, H.Y.; Altalhi, T.; Kumeria, T.; Aminabhavi, T.M.; Pai, R.K.; Madhuprasad; et al. Paper-based microfluidic analytical devices for colorimetric detection of toxic ions: A review. TrAC Trends Anal. Chem. 2017, 93, 212–227.
based微流体and生物传感器for发布于:江苏省声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。